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Remarque 

Dans les 6tudes faisant intervenir les rapports des pou- 
voirs rotatoires sp6cifiques, l'expression (3) a donn6 de 
bons r6sultats. 

Cela tient ~t ce que les diff6rences entre les valeurs 
mesur6es et les valeurs calcul6es par la formule (3) 
6tant syst6matiquement de m~me sens se compensent, 
au moins partiellement, dans les rapports. 

Cette expression (3) est tout de m~me int6ressante 
car elle met bien en 6vidence les facteurs principaux 
agissant sur le pouvoir rotatoire, / t  savoir: le pas et la 
bir6fringence. 

Conclusion 

La th6orie de Mauguin-de Vries donne une bonne re- 
pr6sentation qualitative des ph6nom~nes observ6s et 
une repr6sentation quantitative pr6sentant des 6carts 
systbmatiques assez grands. Ces 6carts avec les valeurs 
exp6rimentales pourraient ~tre diminu6s en introdui- 
sant l'hypoth~se d'une inclinaison des mol6cules de 
p-azoxyanisole sur l'axe h61icoidal, variable avec la 
temp6rature. Cela introduirait des param~tres suppl6- 
mentaires, qui pour ~tre probants devraient &re simul- 
tan6ment atteints par une autre vole. 

Enfin la comparaison de nos r6sultats avec ceux de 
Cano (1967) pour une mSme longueur d'onde et un 
mSme titre montre que les valeurs du pouvoir rotatoire 
sp6cifique sont voisines, quels que soient la longueur 
d'onde et le titre, h condition de les comparer aux 
m~mes temperatures r6duites - c 'es t / t  dire, pour nos 
m61anges, ~t des temp6ratures s'6cartant 6galement de 
la temp6rature de fusion isotrope du m61ange. 

Ceci serait en faveur d'une extension ~t l'6tat choles- 
st6rique de la th6orie de Maier & Saupe (1959, 1960) 
faite pour l'6tat n6matique. 
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A practical and fast method for the determination of the layer sequence of high-order polytypes is 
described. Experimentally, the method involves only the determination of the relative order of reflexion 
intensities and does not employ actual intensity measurements. Auxiliary information, such as the per- 
centage of hexagonality and the cyclicity of the polytype involved, considerably shortens the computer 
time needed. The method was used to identify a large number of ZnS polytypes and it is applicable to 
other polytypic material as well. 

Introduction 

The number of layers in the unit cell can be readily as- 
certained from an oscillation photograph of the poly- 
type. The determination of the stacking sequence of the 
layers, on the other hand, is a far more involved prob- 
lem, especially in polytypes having a large number of 
layers per unit cell. This is mainly due to the fact that 
there are approximately 2n-1/n possible different struc- 
tures in a polytype of order n, i.e. in a polytype having 
n layers in its elementary sequence. 

The usual methods employed for the identification 
of polytypes are: 

(a) Working out probable structures and arriving at 
the correct one by trial and error. Many SiC and CdI2 
polytypes were identified in this manner (Verma & 
Krishna, 1966). The method has been feasible in these 
cases since most polytypes in these materials are based 
on small basic types. For ZnS polytypes, however, 
which frequently have rather long elementary sequences 
and no small basic types, this method is generally not 
suitable, due to the excessively long time required, even 
if using a computer, for complete identification of 
higher order polytypes. Only one higher order ZnS po- 
lytype (of order 22) has been identified by this method 
(Daniels, 1966). 
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(b) Calculating, with the aid of a computer, the in- 
tensity distributions of all possible structures of given 
order and comparing them with the experimental in- 
tensity distribution. The advantage of this method over 
the former one is its applicability to computer work, 
where the bottlenecks are the input and output stages. 
A large number of ZnS polytypes could be identified in 
this manner.* For high order polytypes the method be- 
comes impractical because of the very long time re- 
quired both for computer compilation of the intensities 
of all possible structures as well as for the comparison 
process. 

(e) Patterson's method as modified by Farkas-Jahnke 
(1966)t for the identification of polytypes. It seems 
that the need for a very accurate determination of ex- 
perimentally obtained intensities is a serious limitation 
of this method. 

In this paper a computer method is described which 
combines some of the principles underlying the three 
above mentioned methods whilst trying to decrease 
computer time as far as possible. The method is de- 
scribed here, and has been employed for the identifica- 
tion of more than 50 ZnS polytypes~: it may also be 
adapted for the identification of polytypes of other ma- 
terials. 

(e) The number of Zhdanov numbers in the elemen- 
tary sequence can be found from birefringence meas- 
urements (Brafman & Steinberger, 1966). 

The information in (a) and (b) must be known in 
order to use the identification program. They are ob- 
tained from an oscillation photograph by measuring 
interlayer distances and observing systematic absences 
respectively. The information in (c), (d) and (e) are not 
essential, but reduce considerably the computer time 
needed. 

Experimental data required for the identification 
proper are the relative refected intensities of one row 
of reflexions hk.l with arbitrary and constant h and k 
(subject to h-k  being non-divisible by 3) and - n / 2  < l< 
+ n/2 (n being the order of the polytype), as obtained 
for example from a c axis oscillation photograph. 

From these reflexions a set of i (i < n) reflexion spots 
is chosen visually in such a way that no two spots should 
have equal or nearly equal intensities. Also the chosen 
spots should cover as wide an intensity range as pos- 
sible. 

The indices l of these reflexions are arranged as an 
ordered set ll ,lz, . . . l~, so that their corresponding in- 
tensities lobs are in decreasing order 

Iobs(ll) > Iobs(12) > . . .  > Iobs(li). 

Preliminary information and experimental data 

Preliminary information about the polytype reduces 
the number of possible structures that must be con- 
sidered in the course of the identification. The informa- 
tion available is as follows: 

(a) The number of layers in the unit cell of the poly- 
type. 

(b) The polytype being rhombohedral or not. 
(c) The cyclicity of the polytype, defined as follows 

(Mardix, Steinberger & Kalman, 1969). 
Let the Zhdanov symbol of a polytype of order n be 
(I1JxIzJz . . . ImJm). Denoting 

k = l  k = l  

(note that I + J = n  and that the Zhdanov symbol is 
written so that I>  J), the cyclicity is defined as C =  
( I - S ) / n .  
The identification of ZnS polytypes is further simplified 
by the following facts: 

(d) The number 1 does not occur in the Zhdanov 
sequence of vapour grown ZnS crystals. 

* A list of identified ZnS polytypes appears in Table 2 of 
Mardix, Steinberger & Kalman (1969). Structures given in this 
Table under references (d) to (g) were identified by this method. 

t A detailed description of the method is found in Dorn- 
berger-Schiff & Farkas-Jahnke (1970) and Farkas-Jahnke & 
Dornberger-Schiff (1970). 

.]: Structures under reference h, i, j, k and l in Table 2 of 
Mardix, Steinberger & Kalman (1969). 

The identification program 

There are two different programs, one for rhombohe- 
dral polytypes and one for non-rhombohedral ones. 
Both programs consist of 4 sub-programs: classifica- 
tion, elimination, calculation of intensities and final 
identification. 

A. Non-rhombohedral polytypes 

It is supposed that the preliminary information given 
in (a) to (e) of the last paragraph is known; thus n, m, I 
and J are given. 

The classification sub-program 
The purpose of the program is twofold: 
(a) To form all possible Zhdanov symbols compat- 

ible with the preliminary information. 
(b) Since the Zhdanov symbols of a given polytype 

can be written in several equivalent ways [e.g. (3 2 2 3), 
(2 2 3 3), (3 3 2 2), (2 3 3 2)] this sub-program also se- 
lects one single Zhdanov symbol of the equivalent ones. 
Only this particular symbol is transferred to the next 
sub-program. 

If the cyclicity of the polytype is not known, so that 
I and J are not given, classification begins with I = J  
for n even (which incidentally is the case for vapour 
grown ZnS polytypes) or with I =  J +  3 for n odd. After 
forming all Zhdanov symbols for these values of I and 
J, I is increased and J decreased by 3. This procedure 
is discontinued for values J <  m. If condition (d) holds, 
values J <  2m need not be considered. 

If the value of m cannot be determined by birefrin- 
gence measurements, then the classification has to be 
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carried out for m = 1,2, . . .  For n > 4 no values m >_ n/2, 
and if condition (d) holds no values m>n/4 need be 
considered. 

The elimination sub-program 
Consider the selected set of reflexion spots, men- 

tioned in the introduction, which comply with the con- 
ditions 

Iobs(ll) > Iobs(12) > . . .  > lobs(h) (1) 

The elimination sub-program has been designed to dis- 
card those Zhdanov sequences promoted from the clas- 
sification sub-program, which do not comply with the 
above set of inequalities. In practice, the intensities 
leale(ll) and Ieale(12) of the reflexions hk.ll and hk.12 are 
calculated* for the first Zhdanov sequence. If Ieale(ll) < 
Ieale(lz), this particular Zhdanov sequence is discarded 
and another is promoted. If, however, Ieale(ll)> 
Ieale(lz), then Ieale(13) is calculated; again, leale(13)_> 
leale(12) causes the elimination of the sequence, while if 
Ieale(13) < Ieale(12), the computer provides/eale(14) and so 
forth. All Zhdanov sequences successively promoted 
from the classification sub-program are tested in this 
manner, and only those are transferred to the next sub- 
program, which have the same hierarchy of intensities 
as the set selected from the diffraction photograph 
(equation 1). Some complication arises if the values of 
I and J are not known, or if I = J .  In these cases the 
sign of the indices l are not known. For this reason the 
signs of the experimental indices l are reversed if 
Ieale(la) < Ieale(12) and then calculation of intensities of 
the following indices l proceeds as described above. 

The final determination of the structure 
In most cases the output of the previous sub-pro- 

gram includes, after eliminating the non-fitting se- 
quences, only one possible structure. In some cases 
however more than one structure passes the elimina- 
tion. In either case the intensities for the entire range 
of l ( - n / 2  < l< + n/2) of all fitting structures are now 
calculated. This is necessary since the elimination pro- 
gram provided intensities of i reflexions only, where the 
number i is considerably smaller than n. 

The final output of the computer is thus a small num- 
ber (frequently only one) of possible Zhdanov se- 
quences together with their sets of calculated intensi- 
ties. These sets are easily compared with the entire set of 
observed intensities, and the Zhdanov sequence giving 
satisfactory fit is singled out as the one representing the 
structure of the polytype. 

The same comparison between the entire sets of cal- 
culated and observed intensities is carried out, even if 
only one sequence passes the elimination process, as a 
final check. 

The observed intensities are estimated by comparing 
the intensities of the reflexion spots with the aid of a 

* The formulae for the calculation of intensities are compiled 
in the Appendix. 

magnifying glass. It was found convenient to employ 
an oscillation photograph of a (preferably known) po- 
lytype for performing comparisons. 

For this purpose intensities are arranged, as usual, 
in eight groups, from vvs to a. If possible, further re- 
lations between intensities of the same group are deter- 
mined. 

It is noted that no ambiguities in polytype identifica- 
tion have been encountered so far by following this 
procedure. 

B. Rhombohedral polytypes 
The classification sub-program for these polytypes is 

somewhat different from that presented above, in that 
it deals separately with cyclic and anticyclic polytypes 
[ I - J =  l(mod 3) and I - J =  2(mod 3) respectively]. The 
elimination sub-program is the same as for the other 
polytypes. The calculation of the intensities does not 
differ either, but it is performed only for n/3 reflexion 
spots, where n is the order of the polytype. 

An example of the identification procedure 
Table 1, column 2 shows the observed intensities of 

the 10.l row of a ZnS polytype, found in crystal 217/55 
and identified by Kiflawi, Mardix & Steinberger (1969). 
(A photograph of the relevant row was published in 
that paper.) From the distances between the reflexion 
points along the row line it could be deduced that the 
elementary sequence contains 44 layers. This was as- 
certained by using a method, proposed by Krishna & 
Verma (1963), in which the numbers ofreflexion points 
between two points having a similar intensity in rela- 
tion to their neighbours were counted. The birefring- 
ence of the polytypic region was found to be 2.3 x 10 -3. 
The number 2m of Zhdanov symbols in the unit cell is 
determined by using the proportionality between the bi- 
refringence A/t and the value of 2m (Brafman & Stein- 
berger, 1966), given by 

2m = A/~ 
24 x 10 .3 n .  

2.3 x 10 .3 x 44 
In this case the value 2m = = 4.2 is ob- 

24 x 10 .3 
tained. As 2m is an even number it is clearly 4. The 
computer had now to eliminate all non-fitting element- 
ary sequences of 44 layers having 4 Zhdanov numbers. 
Since the material was vapour-phase grown ZnS, Zhda- 
nov symbols having the value 1 were discarded from 
the start. The set of l values of reflexion spots in a 
descending order of intensities included 8 values out 
of 44. They were 1 1 = - 1 5 ,  / 2 = - 1 4 ,  /3 = - 1 6 ,  /4 = 

- 11, 15 = - 3,/6 = 2,/7 = 4, 18 = 6. After the elimination 
sub-program, nine structures were left as having the 
right hierarchy of intensities. They are given in Table 1 
with their intensity distribution. It is easily seen that 
the only fitting sequence is (17 6 17 4). It should be 
noted that the number of remaining structures would 
have been reduced if more l values were introduced in 
the set of experimental l values given above. For exam- 
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pie f rom Table  1 it can be seen that  the intensi ty o f  the 
reflexion spot  wi th  l --  16 lies be tween  the intensit ies of  
the reflexion spots hav ing  l =  - 16 and  l =  - 11. Should  
this value be in t roduced  into the l set, then  the only 
possible structures wou ld  have been (21 17 4 2), 
(26 3 5 4) and  (17 6 17 4). I f  also the intensi ty with l = 0  
wou ld  have been in t roduced  be tween  the values l = 4  
and  l =  6, thus hav ing  a set o f  10 l values ( i =  10), there 
wou ld  remain,  after the e l iminat ion,  only one  possible 
structure,  namely  (17 6 17 4), which  indeed  is the only 
fitting structure. Exper ience showed  that  in o rder  to 
get only one  structure after e l iminat ion,  one  should  
choose  at the outset  i ~_n/3. In the above  example  the 
value of  the cyclicity was not  used, t h o u g h  it is avail- 

able f rom the diffraction p h o t o g r a p h ;  if it were used, 
more  e lementary  sequences  wou ld  have  been d iscarded  
before  the use o f  the e l imina t ion  sub-program proper .  

Conclusion 

The m e t h o d  descr ibed in this paper  employs  for iden-  
tification o f  polytypes  an o rde red  set o f  reflexions, ar- 
r anged  accord ing  to decreasing intensities,  ins tead o f  
the numerica l  values o f  relative intensit ies requi red  in 
mos t  o ther  m e t h o d s  of  s t ructure identif icat ion.  (The 
set of  reflexions migh t  have been a r ranged  in o rder  o f  
increasing intensi ty as well.) This p rocedure  is in prin- 
ciple justified by two considerat ions .  First, the identifi- 

Table  1. E x p e r i m e n t a l  d i s t r ibu t ion  o f  in tens i t ies  o f  a 44 order  p o l y t y p e  a n d  the  ca l cu la t ed  in tens i t ies  
o f  the  n ine  s t ruc tures  le f t  a f t e r  e l im ina t ing  the  non- f i t t i ng  ones 

The set of 

l 

22 
21 
20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

--1 
- 2  
- 3  
- 4  
- 5  
- 6  
- 7  
- 8  
- 9  

- 1 0  
-11  
- 1 2  
- 1 3  
- 1 4  
--15 
- 1 6  
- 1 7  
- 1 8  
- 1 9  
- 2 0  
-21  
- 2 2  

l values having intensities in a decreasing order was 1= -15 ,  -14 ,  -16 ,  -11 ,  
given as 0.00 are not real absences, but they are less than 

Observed 
intensities (20 1626) (21 1742) (19 1762) (17 1629) (26954)  (2497 

vw (> 21) 0.87 1-98 0.27 1.80 1.22 0.18 
vw 1.43 1.45 0.23 3-02 0.03 2.41 
rn 0"66 6"41 3"81 0"33 1 "26 1 "42 
a 8"50 2"44 2-46 2-33 0-57 2"70 
s 7-91 12-35 14"54 7-60 4-45 2"26 
vw (~- 13) 14-21 1 "30 5"29 14"46 12"8l 2-44 
s 29"19 26"49 32"98 40-48 7"32 19"27 
vw (> 13) 25"65 61"46 36.18 12-86 4"63 15"12 
s (> 12) 84-77 1 0 0 " 0 0  1 0 0 " 0 0  100"00 18"38 3"61 
vw 34"11 11"41 19"64 30"50 16"66 15"22 
s 4"63 13"74 11"75 4"93 2"32 9"64 
a 6"65 1"42 1"99 1"29 0"87 0"16 
m 0"17 4"13 1"94 1"34 1"73 1"51 
vvw 0.58 0.13 0.23 0.69 0"69 0.40 
w 0"90 0.68 0"44 0.73 2-56 2-49 
w 0.27 1.00 0"80 0.88 1"56 1 "53 
a 0"53 0"04 0"04 0-04 0"04 0.00 
w 0.03 1.13 0.34 0.78 0.06 0.08 
vw ( > O) 1"04 0"05 0"74 0"17 0-09 0.10 
vw 0.27 0.41 0-44 0"04 0"40 0"26 
vw ( > 4) 1"70 O" 10 1 "40 1 "57 O" 10 0"38 
a 0" 13 0.49 0.22 0.23 0.29 0.63 
vw 0"46 0.44 0.42 0.40 0.27 0.28 
w (_~ 5) 0-63 1.72 0.51 0"81 0.51 0.78 
a 0.23 0.73 0.26 0"43 1-46 0.04 
w (> - 1) 2.20 2"41 2"20 2-16 0-56 0.76 
a 1"36 0-39 0.79 0.25 0.05 0.80 
w 1.36 1"53 2"03 0"13 0.17 0.22 
a 1 "05 0.00 0.08 2.22 0"07 0.45 
vvw 0"07 0"77 0"75 0"81 0"69 0"53 
a 1"10 0"61 0"86 2"53 0"46 0"66 
w 3"50 2-68 2.69 0.37 0.74 0-08 
vvw (> - 7 )  1"65 1.55 2.64 0.05 0.51 0.51 
m 6"65 7-81 5"04 7.10 4-81 2"20 
a 0"48 0"71 0"52 0"59 13-16 16"46 
vs 5"66 18"34 7-97 11"13 3"74 10"65 
vs ( > -- 16) 69"59 40"55 52.90 46-83 40"16 34"02 
vvs 100-00 64-79 70"69 66"00 1 0 0 " 0 0  100"00 
vs 14"71 34"17 15"76 15"49 8"69 14"49 
w 0.35 0.43 2.24 2.97 9"25 9"65 
w (> - 17) 6"02 4"50 1"95 5-28 1"93 1"62 
w (> -21)  1"03 0-19 4"91 1.45 0.45 0-37 
vvw 4"83 0"75 1"18 0"84 0"27 0"61 
w 0"28 0"53 2-29 0"97 1"85 0"81 
vw 0"87 1"98 0"27 1"80 1"22 0"18 

- 3 ,  2, 4, 6. The calculated intensities 
0"005. 

4) (25694)  (177173)  (176174)  

0.45 0-14 0.47 
1.39 0.69 0.23 
1.01 1.68 2-99 
0.67 0.00 0.00 
6.87 5-70 7.38 
4.55 0-81 0-23 
0.97 10.29 11-46 

10.79 1.82 0-49 
7.59 11.41 12.44 
0.44 1.29 0.36 
7.26 7.82 9.48 
5-14 0.13 0.04 
0.02 2-98 4-66 
1.69 0.35 0.11 
0-95 0-43 1-09 
0.51 1-45 0.54 
0.31 0.00 0-00 
0.12 1-40 0.64 
0-43 0.00 0-31 
0-30 0.36 0.21 
0.48 0-07 0.50 
0.10 0-03 0-02 
0.24 0.23 0.25 
0.10 0.45 0.64 
0.68 0.07 0.02 
1-09 0.45 1.31 
0.06 0.16 0.01 
0.48 0.09 0.92 
0.38 1-39 0.01 
0-00 0-00 0-03 
0.06 2-50 0.01 
1.12 0.06 1-17 
0.73 1.41 0-06 
1-74 1.75 7-09 

12-61 0.08 0-01 
8.85 14-37 25-12 

31-76 36-50 24.68 
100.00 1 0 0 - 0 0  100.00 

9.38 5.43 18.50 
6-13 1.50 1.00 
1.84 0.01 2-67 
1.40 3.71 1-84 
0.09 0.01 0.09 
0.71 2.31 0.91 
0.45 0.14 0-47 
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cation of the structure of a polytype of a given order 
entails basically the identification of the stacking se- 
quence of a known number of identical layers, the 
structure of each layer being known and constant (at 
least to a very good approximation) whatever the order 
and the stacking sequence. Also the number of possible 
displacement vectors between two neighbouring layers 
is very small - namely two in the cases considered here. 
Second, the number of possible different stacking ar- 
rangements of n layers, about 2n-1/n, is much smaller 
than the number of possible ordered sets of n reflexions, 
which is n.t. In most cases the number of possible stack- 
ing arrangements is further reduced by some additional 
information, such as the percentage of hexagonality 
(Brafman & Steinberger, 1966) or the cyclicity (Mardix, 
Steinberger & Kalman, 1969). 

It is noted that the method described here is essen- 
tially a process of elimination: successively more and 
more structures are rejected as the ordered set of ex- 
perimental intensities (used for comparison) is in- 
creased in size. Moreover, this process of elimination is 
efficient enough to turn out a reasonably small number 
of possible polytypes even if a relatively small set of 
ordered reflexions is used for comparison. 

In the very unlikely case that two different polytypes 
should give identical sets of ordered reflexions, this 
method would leave both structures as possible an- 
swers, and in this case numerical values of relative 
intensities would have to be obtained to decide be- 
tween the alternatives. 

The main advantages of the method is the fact that 
normally no numerical values of relative intensities are 
required. This relieves not only the considerable ex- 
perimental tedium of actual measurement of intensity 
values of often exceedingly small spots (~50/2) as 
obtained from very small polytype regions, but it also 
circumvents the necessity of determining, in a given 
sample, the exact dependence of reflected intensity 
on the structure factor. 

An additional advantage of this method is its relative 
speed. If a set of m reflexions is considered for com- 
parison, the number of eligible structures decreases by 
a factor of about l /m!.  The number of structure factor 
computations to be carried out in this case, starting 
with N structures is about 2 N +  N/2 + N/3! + . . .  + N/m! 
In practice the computer time required on an IBM 7040 
for the elimination process for a polytype of order 
n =40, using m--8 reflexions, was found to be about 4 
minutes 

Finally it is noted that the same method can be 
employed to identify polytypes of materials other than 
ZnS for example SiC and CdI2. 

A P P E N D I X  

T h e  c a l c u l a t i o n  o f  in t ens i f i e s  

The intensity Ink. z is given by 

Ih~. ~= ]q) hg. l l2KMc, l (2) 
where 

I cp~. z l 2 = cos 3 t- 
t=l 

The summation is over all the layers in the unit cell; 
t is the cardinal number of the layer. ~t equals 0, 1 or 
2 according to whether the layer in the tth place is an 
A, B, or C-type layer respectively. There are 3n pos- 
sible different values of cosines and 3n different values 
of sines in equation (2). These 3n values are calculated 
and stored in the memory of the computer as two vec- 

It (mod n) 
tors C(u,a) and S(u,a), where u -  and ~ = ~t. 

n 
The value of I9 he.z] z is then calculated by summing 
the appropriate values of C(u,a) and S(u,a). The fac- 
tor Kng. z includes the atomic scattering factors and the 
Lorentz-polarization factor. 

K~g. z = f 2 L  
3~rl 

f2  =f~:n + f s  2 + 2fz , f s  cos  2~" 

fz~ andfs  are the atomic structure factors of Zn and S 
respectively and 

1 + COS 2 20 COS 0 
L = sin 20 " (cos 2 0 -  sin 2 ~,)1/2 

where 0 is the Bragg angle and 9, is the angle between 
the reflecting plane and the axis of oscillation. 
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